Aviation Spare Parts Inventory Funding For Readiness

1 Feb 2001

Agenda

- **Background**
- Consumables
- Reparables
- Summary of Actions
- Conclusion

Aviation Readiness Trends

- Measured by percentage of aircraft not capable of performing any of its missions -- Not Mission Capable (NMC)
- Two NMC components
 - Supply (NMCS): lack of repair parts
 - Maintenance (NMCM): lack of maintenance capability

NMC rates are much of the reality behind the headlines on declining readiness.

Navy Non-Deployed Airwing Unclassified Readiness

Days Prior to Deployment

Supply

Consumables

- Consumed in use or cannot be economically repaired
- Installed plane side and for repair of reparables
- Examples: Washer (\$.16); Flameholder afterburner (\$23,971)

Reparables

- Durable item which, when unserviceable, can normally be economically restored to a serviceable condition through repair by an intermediate or depot level maintenance activity
- Examples: Altimeter (\$3,573); Aileron (\$83,825)
- Identified consumable and reparable contribution to aviation NMCS:

	\mathbf{AF}	Navy
Consumable	52%	43%
Reparable	48%	57%

Defense Working Capital Funds

Spares support requires forces have funds to buy parts and supply system has parts to sell.

ADoDCAS 2001 **Unclassified**

OSD/PA&E

Consumables

- Indicators are that the customer has sufficient funding
 - In execution customer is ordering needed parts

If not customer funding, what?

- Hypothesis: DLA consumable investment policy contributing to readiness problem (stock not on shelf)
 - Consumable Item Transfer
 - Feedback from supply system customers
 - Investment policy favors low cost, high volume items

If hypothesis correct then high cost/low volume consumables are causing NMCS.

Testing the Hypothesis

- Reviewed consumables that degraded readiness
- Identified a set of consumables that consistently contributed to NMC rate
- Sorted the problem set of consumables by cost and demand frequency
- Reviewed DLA investment model to determine impact on aviation part availability

Investment Strategy Driven by Model

ADoDCAS 2001 **Unclassified**

OSD/PA&E

Unclassified

DLA Investment Strategy

(NMCS Requisitions)
Requisition Volume

High Cost -- Low Demand High Cost -- High Demand Example Flameholder Afterburner **Example** \$23,973.01 Fuel Pump - \$1,370.00 Cost **Low Cost -- High Demand Low Cost -- Low Demand Example Example Insulating Sleeving - \$.65 Lead Electrical \$6.07**

High cost/low volume category cause 76% of the problem.

Reparables

- Indicators are that the customer has sufficient funding
 - In execution customer is ordering needed parts

If not customer funding, what?

- Potential problems
 - Not enough inventory
 - Constraints on ability to do timely repair of available carcasses
 - Carcasses not in the right place
 - Insufficient capacity -- test equipment, manpower, etc.
 - Lack of repair parts needed to fix carcass
 - No order from item manager

Reparables Methodology

- Reviewed reparables that degraded readiness
- Identified a set of reparables that consistently contributed to NMC rate
- Looked at requirements models -- carcasses you need to fix or buy
- Identified catch-up requirement -- difference between the number of reparables available and those needed
- Conducted structured interviews at depots to determine cause of repair constraints

Air Force Procurement Versus Repair

Based on requirements determination data (Sept 99 stratification)

Air Force Catch Up Requirement - Repair

- Repair catch up: Sept 99 \$369M
- The catch up requirement: The difference between the number of serviceable components available and those needed. Comprised of:
 - those that can be repaired (repair catch up) and
 - those which must be procured (procurement catch up).

Repair catch up requirement has grown 38% since Sept 98

Air Force Depot Repair Constraint for Problem Set of Reparables

Surveyed repair activities to determine cause of reparable shortfalls

Air Force Depot Repair Constraint

 Source of depot repair constraint for sample of problem parts causing MICAPs (June 00)

No carcass available10%

Depot capacity constraint9%

Consumable part shortage <u>26%</u>

Subtotal: 45%

Apparent lack of funding

Total: 100%

Additional funding executable

- Executable repair catch up: \$369M * .55 = \$203M

Total catch up executable in future years

Air Force Findings

- Identified repair catch-up of \$369M
- Repair catch-up growing at approximately \$40M per year

Estimated NMCS reduction of up to 4.4% by funding catch-up.

Navy Procurement Versus Repair

Based on requirements determination data (Sept 99 Stratification)

Navy Depot Repair Constraint for Problem Set of Reparables

Surveyed repair activities to determine cause of reparable shortfalls

Navy Depot Repair Constraint

- Though not without problems...analysis of the sample set of parts showed no single driving depot repair constraint
- Significant shortfall of reparable assets at the operating activities and in the supply pipeline:

No carcass available (procurement shortfall): 30%

Carcass returns (20% of 70% depot constraint)

- Total: 44%

 Hypothesis: Unfunded and unfilled reparable part allowances at ships and stations are degrading reparable availability and readiness.

Retail allowance backlog: Allowances for parts for ships and stations that have not been funded.

Navy Retail Allowance Backlog Unclassified

Pre-deployment Cannibalizations Per 100 Flying Hours

Retail Allowance Backlog

* TY\$, Millions Effective June 00

ADoDCAS 2001 Unclassified OSD/PA&E

Unclassified

Navy Backlog Versus Problem Set of Reparables

Navy Findings

- Identified unfunded catch-up requirement of \$571M for Non-Deployed forces (stations) and \$116M for Deployed forces (ships)
- 58% of problem set of reparables found in the catchup requirement for Non-Deployed forces

Estimated NMCS reduction of up to 4% by funding catch-up.

Summary of Actions

- DLA provided \$500M to increase inventory levels for high cost/low volume aviation consumable parts
 - Delivery of parts has started...will continue through FY04
- Air Force provided \$609M to fund repair catch up and to prevent future reoccurrence
 - Repairs and deliveries will commence in FY02 with most parts delivered by FY04
- Navy provided \$355M to repair or procure parts for retail inventory levels
 - Deliveries will begin in FY04 and continue through FY08

Conclusion

- Aviation material readiness is an ongoing concern
- Measures taken to reverse decline in materiel readiness
 - Funding should help reduce and prevent reoccurrence of spare parts problems
 - Need to measure effectiveness of actions and ensure continued readiness focus
- Ongoing efforts will further identify ways for aviation depots to support readiness
- Opportunities exist through resourcing and process improvement to ensure supply system efficiently supports desired readiness

Readiness is the yardstick for measuring success.